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Abstract

With the amount of sensors in the environment ever increasing, high demands
are being posed on today’s sensor systems in terms of power consumption, data
compression and cost. This thesis presents the work of constructing and eval-
uating an FPGA-based ADC front end suitable for running demanding signal
processing algorithms on it with data rate reduction as its primary goal. A pro-
totype of the front end is built and demonstration software is written demon-
strating the feasibility of it being able to handle a matching pursuit-based al-
gorithm which allows for sparse representations of signals for data rates over
1 MHz. This assessment is done by evaluating the front end in terms of noise,
power consumption and speed and also by the construction of a test application,
an FIR filter bank which is related and compared to an FPGA implementation
of matching pursuit. It is also concluded that for the system described in this
thesis, an ASIC design may be more suitable than an FPGA design because of
the higher power consumption, lower speed and higher per-unit-cost of FPGAs
in comparison to ASICs.
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Chapter 1

Introduction

Many of today’s sensors transmit their information wirelessly as a wireless com-
munication link is often easier to set up physically than a communication link
through cables. For instance, a sensor can be mounted on a rotating part,
making it very hard to draw cables to it. There are two main problems with
cable-free sensors. The first problem is that they need to either be battery
powered or gather their energy from the environment. Because of this problem,
such sensors should be very energy efficient as to require as little maintenance
as possible. The second problem is the amount of data that is being sent by
them. This data congestion problem has been examined in an article by Hull,
Jamieson and Balakrishnan in 2004 [1]. The näıve way to send data would be
to just send raw samples directly. However, one can also send compressed data
to reduce the data rate by doing some processing on the sensor system. Because
of the huge numbers of sensors used in some applications, the problem of high
amounts of data also exists for the wired case, though.

”Matching pursuit”, introduced by Mallat and Zhang in 1993 [2], is an al-
gorithm which allows for succinct representations of signals and may therefore
be an appropriate way of compressing sensor data. Matching pursuit describes
a signal as a weighted sum of generic functions, called kernels. This algorithm
has proved to be an efficient way of encoding both natural sounds and images.
In 2004, Olshausen and Field [3] showed that matching pursuit with dictionary
learning can be used to sparsely encode natural images, and in 2006, Smith and
Lewicki [4] showed how to sparsely encode mammalian sounds using matching
pursuit with dictionary learning. The dictionary learning part of matching pur-
suit means that a probabilistic method is used to generate kernels that together
provides a means of accurately describing the signal that is being processed.
A field-programmable gate array (FPGA) implementation of matching pursuit
with dictionary learning has been simulated in a parallel project made by Al-
bertsson [5].

The international company SKF [6], which among other things manufacture
bearings, mechatronic products and lubrication systems, uses acoustic emission
analysis for condition monitoring of machine components like bearings. They
have found that acoustic emission signals from some of their bearings have
interesting features at frequencies of several hundreds of kilohertz that are not
well understood [7]. Due to the high frequencies and non-trivial structure of
these signals, a system to efficiently encode and transmit data produced from

8



1.1. GOALS CHAPTER 1. INTRODUCTION

an acoustic emission sensor could be of good use to SKF.
A sensor system with the capabilities of performing the event-based matching

pursuit algorithm described by Smith and Lewicki [4] might achieve low power
consumption and low data rates and might therefore be suitable for monitoring
the bearings just mentioned. An idea arising from this observation is that a
“more intelligent” analog-to-digital converter (ADC) or an analog-to-feature
converter (AFC), can possibly be created. This component would take as input
an analog signal and output a digital representation of the input signal that is
a compressed version of what an ordinary ADC would output. Using matching
pursuit would enable the AFC to describe an analog signal in terms of its features
instead of the signal’s raw digital representation as an ordinary ADC would.
(For more information about these ideas, see [8].)

Due to matching pursuit’s significant requirements of processing power, a
microcontroller-based AFC seem not to be appropriate for the task. An appli-
cation specific-integrated circuit (ASIC) component may be more appropriate.
To demonstrate the concept and to lay the groundwork for producing an ASIC
that is able to do what was just described, this thesis focuses on a sensor front
end based on a FPGA that is capable of running matching pursuit.

Some questions thus arise; Can a sensor front end be developed with embed-
ded FPGA-based processing capabilities that is capable of performing signal
processing algorithms like matching pursuit on high frequency signals? Can
such algorithms be run on such a system on signals with interesting frequency
content of as high frequencies as hundreds of kilohertz or even in the megahertz
range? Can such a system achieve a low power consumption? How accurately
can such a system sample data?

If an AFC can be developed, it would have implications in several fields
of research. The development cost and per-unit-cost of condition monitoring
systems could be reduced while at the same time the power efficiency could be
increased. Improved power efficiency would in turn benefit the environment.
Although this thesis has condition monitoring of bearings through analysis of
acoustic emission as its reference application, there are several other fields of
research that would benefit from this too, two such areas being image and speech
recognition which could also see reduced costs and improved efficiencies.

This thesis demonstrates the work of building an ADC front end interfacing
an FPGA with the purpose of being a general purpose signal processing plat-
form. This front end is then evaluated and test applications are written for it
to demonstrate its processing capabilities in order to investigate the questions
listed above.

1.1 Goals

The primary objective of this thesis is to construct an ADC front end that is
capable of performing advanced signal processing algorithms, in particular the
event-based matching pursuit algorithm that Smith and Lewicki described in
2006 [4], on an FPGA. A demonstration of the system running an FIR filter
bank should be made so that its processing capabilities can be estimated.

9
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1.1.1 Scope

There are some limitations regarding the goals of this thesis; These are the
following:

• While the ADC front end should leave the possibility open to design for
low power, the primary goal of all demonstrations in this thesis is compu-
tational speed.

• A prototype of the ADC front end and not a ready-for-production unit
should be produced. The step should be small, though, to go from the
prototype to a final product.

1.2 Motivation

There are several possible applications for the proposed ADC front end. Some
of them are presented in this section and all of the presented ones are using
the event based matching pursuit algorithm described by Smith and Lewicki
in 2006 [4] as this is the reference algorithm used to measure the processing
capabilities of the system.

1.2.1 Condition monitoring of bearings

Acoustic emission

A possible application for the ADC front end proposed in this thesis is within the
field of condition monitoring of bearings through analysis of acoustic emission.
SKF [6], a company producing, among other things, bearings and sensors for
bearings, examines the acoustic signal emitted from their bearings in order to
detect defects so that a bearing can be replaced before it breaks. By doing this
they can prevent it from causing damage to surrounding machinery or people.
A problem within this field is that the acoustic signal is of very high frequency
and therefore, if the data is transmitted uncompressed, very high data rates
are reached. It is also desirable to place the senor as close to the bearing as
possible as the signal is otherwise misrepresented due to the attenuation and
distortion introduced in the signal while it propagates through different materi-
als. Therefore the sensor is often placed inside the bearing and the sensor signal
must therefore be transmitted wirelessly. With the ADC front end proposed in
this thesis and the event-based matching pursuit algorithm described by Smith
and Lewicki in 2006 [4], the data rate can be greatly reduced which in turn
reduces demands on the routing system responsible for forwarding the sensor
data to a computer as well as lowering the power consumption of the wireless
transmitters.

Vibration analysis

Analysis of lower frequency vibration measurements using matching pursuit have
been proved in 2002 by Liu, Ling and Gribonval [9] to also be a good method
for performing condition monitoring on bearings. Therefore, even though the
sensor front end would prove to be too weak to be able to do matching pursuit
to analyze acoustic emission, it may still very well be suitable for vibration
analysis to detect bearing faults.

10
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1.2.2 Earthquake detection

In 2001, Alperovich, Zhelude and Hayakawa mentioned a use case of matching
pursuit in the field of earthquake detection. By implementing the same algo-
rithm as for the condition monitoring of bearings example, the sensor system
proposed in this thesis could possibly be used to detect earthquakes before they
strike. Several sensors could be placed in the area of interest and, if sufficiently
low power consumption can be achieved, be powered by solar panels. Earth-
quake detection is very useful because it enables precautions to be taken a short
period of time before the earthquake strikes. For example in a mine, workers
could move to safety rooms just before the strike.

1.2.3 Speech recognition

Wang and Goblirsch showed in 1997 [10] that matching pursuit can be used
for speech recognition. Speech recognition implemented on the ADC front end
proposed in this thesis could produce a system able to detect and forward calls
for help in environments where there are no people to hear the calling person.
This can be useful for many workers who work in loud or solitary environments.

1.3 Thesis structure

This thesis is organized as follows:

• Chapter 1 (this chapter) provides an introduction to the subject and
presents some motivation and goals for this thesis as well as the thesis
structure and a license notice.

• Chapter 2 presents a way in which the ADC front end can be designed as
well as the theory behind the design.

• Chapter 3 presents the resulting ADC front end implementation and test
applications written for it.

• Chapter 4 discusses and evaluates the different features of the ADC front
end test applications.

• Chapter 5 contains a glossary of the abbreviations used in this thesis.

• Chapter 6 contains references to literature referred to in this thesis.

• Appendix A contains a specification of the ADC front end.

• Appendix B contains parts of the source code developed in this thesis.

1.4 Licensing of work

The source code that is part of the work presented in this thesis is released under
the GNU General Public License, version 3 [11]. All other work presented in
this thesis, including schematics, is free for anyone to use in any way they want
as long as credit is given. The full source code and design files of this thesis are
available upon request to the author.
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Chapter 2

Theory

The ADC front end that this thesis demonstrates the construction of consists
of two main parts. The first is an analog part which performs amplification and
low pass filtering on an incoming signal. The second part consists of an ADC
and an FPGA. The analog filtered signal is sampled by the ADC, a digital low
pass filter is applied on it from within the ADC and then a digital representa-
tion of the signal is sent to the FPGA. The FPGA then performs processing
on the digital signal and forwards its results through a universal asynchronous
receiver/transmitter (UART) port which can either be read by a computer di-
rectly or forwarded to a computer by a wireless communication device.

2.1 FPGA versus other computing methods

It is not obvious that an FPGA is the optimum choice of computing device.
Therefore, some alternatives are discussed in this section.

2.1.1 Microcontroller

Due to the high demands of processing power of the algorithm described by
Smith and Lewicki in 2006 [4] (which is mentioned in one of the design goals of
the ADC front end, see Section 2.2.1) a microcontroller lacks the computational
capabilities required for this project. An attempt has been made in a parallel
project by Albertsson [5] on a laptop with a 1.8 GHz dual-core Intel Core i5
(Turbo Boost up to 2.8 GHz) with 3MB shared L3 cache (which is far more
powerful than most microprocessors). During this attempt information could
only be processed with a sample rate no higher than around 27 kHz which is
too slow for many applications.

2.1.2 Digital signal processor

A digital signal processor (DSP) is specifically designed to run signal processing
algorithms like digital filters fast. This property makes them suitable for per-
forming the algorithm described by Smith and Lewicki in 2006 [4]. However, an
FPGA solution has another advantage; Converting from an FPGA design to an
ASIC is relatively easy and could increase the processing speed and decrease the
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power consumption significantly. An FPGA is also suitable for a wider range of
applications compared to a DSP due the high flexibility of FPGAs.

2.2 ADC front end

In this section, goals for the ADC front end are first presented and then follows
an overview of the design and some theory of its different parts and how they
interact with each other.

2.2.1 Design goals

For the design goals of this project the acoustic emission example described in
Section 1.2.1 was chosen as a reference application. This means that one goal of
the ADC front end was set to be that it be able to handle the matching pursuit
event-based algorithm described by Smith and Lewicki in 2006 [4] on signals
with interesting frequency content of up to 1 MHz. Other design goals are:

• Because the signal to be fed into the system can be of varying strength,
the front end should contain variable amplification functionality so that
the signal can be amplified before it is sampled by the ADC.

• To avoid aliasing, high frequency content (above 1 MHz) must be filtered
out from the signal before it is sampled by the ADC.

• The front end must be able to handle differential input so that a com-
mon ground between the front end and the sensor does not need to be
established.

• The front end must provide output samples with at least 16 noise-free bits
of accuracy at an output data rate of at least 2 million samples per second.

2.2.2 Amplification system

Because the source resistance of the device that is producing the input signal
is unknown, the first stage in the ADC front end is a buffering amplifier. The
output of the buffering amplifier, let it be denoted S0, is fed to a programmable
gain amplifier (PGA) which is controlled by the FPGA. The PGA allows for
FPGA controlled gain-control as the PGA amplifies S0 by a factor controlled
by the FPGA.

Let the output of the PGA be denoted S1. Both S0 and S1 are fed to
a multiplexer (MUX) which is also controlled by the FPGA. The multiplexer
is there so that the system quickly can switch from an amplified signal to an
unamplified one.

The output of the multiplexer is then fed to a first-order active analog low
pass filter which in turn sends the signal to the ADC. The ADC communicates
with the FPGA trough a parallel digital interface. An abstract overview of how
the different components are connected is presented in Figure 2.1.

13
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Figure 2.1: Block diagram of the ADC frontend.

2.2.3 Filters

To avoid the effects of aliasing, the input signal must be low pass filtered before it
is used. Filtering can be done both analogically and digitally with both methods
having their advantages and disadvantages. One advantage with an analog filter
is that it can filter out all frequencies lower than an arbitrary break frequency.
This is not the case with a digital filter whose highest filterable frequency is
dependent on the sampling frequency. This is a result of the fact that a digital
signal is a representation of the original signal after it has been sampled. On the
other hand, a steep frequency response with an analog filter is hard to achieve
without high amounts of electronic components. (Steep frequency responses
are desirable because non-steep frequency responses will distort the signal at
frequencies near the break frequency.) This is not the case with digital filters
with which it is easy to achieve steep frequency responses. Due to the just
mentioned advantages and disadvantages of each filter type, a combination of
an analog and a digital filter is suitable for keeping the component count low
(which is beneficial for cost and size) while still achieving a steep frequency
response. The break frequency of the digital filter would in that case be set
at the desired data rate while the break frequency of the analog filter would
be set so that all the aliasing effects introduced by sampling would be filtered
out by the digital filter (which could be at the same frequency as in the case of
the digital filter depending on the shape of the frequency response of the analog
filter). A conceptual illustration of the frequency response of such a combination
of an analog and digital filter is presented in Figure 2.2.
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Figure 2.2: Frequency responses of an analog and a digital low pass filter both
having break frequency ωc. The effects of aliasing on the frequency response
is also shown for a sampling frequency of ωs. The figure illustrates that if ωs

is chosen appropriately, the aliasing effects arising from an analog filter can be
filtered out by a digital filter.
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Figure 2.3: Schematic diagram of a matched electronic first-order active
low pass filter with fully differential signal path having break frequency, fc =
1/(2πRC). vin is the incoming voltage signal and vout is the outgoing voltage
signal.

Analog filter

A matched active low pass filter can be constructed according to the schematic
diagram shown in Figure 2.3. Such a low pass filter would have break frequency,
fc, according to Equation 2.1 as any first order low pass RC filter would [12].
Here, R and C are the resistance and the capacitance, respectively, of the resis-
tors and the capacitors shown in Figure 2.3. Due to the fact that the filter is
matched, it is important that its resistors and capacitors are of high precision.

fc =
1

2πRC
(2.1)

Digital filter

A finite impulse response (FIR) filter is capable of low pass filtering digital data.
An FIR filter consists of a number of coefficients, bn, which are multiplied by
the input signal delayed by n samples to produce its output. The number of
coefficients equals the filter’s order. An FIR filter with a given break frequency
is easy to generate with computer tools like GNU Octave [13] or MATLAB [14].
The mathematical definition of an FIR filter is described in Equation 2.2. Here,
y[n] is output sample n, x[n] is input sample n, bn is coefficient n and k is the
filter order.
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y[n] =

k∑
i=0

x[n− i]bi (2.2)

2.3 FPGA FIR filter bank

To demonstrate that the ADC front end being constructed in this thesis is
suitable for applications like the acoustic emission example described in Sec-
tion 1.2.1, an FIR filter bank can be implemented on the FPGA as such a bank
can be compared in relation to the event-based matching pursuit algorithm de-
scribed by Smith and Lewicki in 2006 [4]. (For information on FIR filters, see
Section 2.2.3.)

2.3.1 Relation to matching pursuit

The innermost loop of the event-based matching pursuit dictionary learning
algorithm described by Smith and Lewicki in 2006 [4] takes care of projections
of kernel functions. These kernel functions can be carried out in parallel through
a bank of FIR filters. The gains obtained from implementing an FIR filter bank
on an FPGA should therefore approximate the gains achieved by implementing
event-based matching pursuit on an FPGA.

2.3.2 FIR filter design

Highly parallel FIR filters can be constructed on an FPGA by building a sepa-
rate multiplier for each value-coefficient pair and feeding the resulting products
into an adder tree which sums them up. An effect of this would be that one
iteration of an FIR filtration can be done in one cycle with a delay introduced
from the pipelined structure of the adder tree. This delay will be of as many
cycles as the height of the adder tree. Assume there are n value-coefficient pairs,
i.e. that the order of the FIR filter is n. Then the adder tree’s height equals
dlog2 ne since an adder tree is built the same way a balanced binary tree is (for
an introduction to balanced binary trees, see [15]). Since the entire FIR filter
structure is pipelined, the clock frequency could be set as high as it could be
for one multiplication instruction (as multiplication is the most time consuming
operation of this structure).

This method of implementing an FIR filter on an FPGA is shown graphically
in Figure 2.4. A bank of FIR filters could simply be implemented by putting
several FIR filters in parallel.
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Figure 2.4: FPGA FIR filter implementation block diagram. This figure is
also available in [8].
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Chapter 3

Implementation

In this chapter, the resulting implementation of the theory from Chapter 2 is
presented.

3.1 ADC front end

The ADC front end board was designed with KiCad which is an open source
suite of electronic design automation (EDA) tools. The resulting design and
performance measurements are presented in this section.

3.1.1 Design

An overview of how the front end was designed is presented in Figure 3.1 while
the detailed specification is presented in Appendix A. A board was constructed
to interface with an FPGA development board. In this section, the designs of
the different parts of that board are presented.

Amplification system

All references to net names and components in this section refer to the schematic
presented in Figure A.1.

The amplification system is the first stage of the ADC front end and consists
of two main components: an instrumentation amplifier and a PGA. The input
signal is first fed to the instrumentation amplifier whose primary task is to
isolate the source resistance from the load resistance of the front end. It is also
amplifying the input signal with a gain of 1.99. The gain of the instrumentation
amplifier can be changed by replacing resistor Rg1 (for details on how, see the
datasheet of the instrumentation amplifier listed in Table A.1). The output
signal from the instrumentation amplifier, let it be denoted S0, is fed to the
PGA. A pulse width modulated (PWM) signal, pwm, is used to control the
PGA. pwm is generated by the FPGA. pwm is converted from a PWM signal
to an analog voltage signal through the low pass filter consisting of resistor R1

and capacitors C1 and C2. This analog voltage signal is then used to control
the PGA. The higher the voltage, the more the PGA will amplify S0. Call the
output from the PGA S1. S0 and S1 are connected to the differential nets,
{v+_pga, v-_pga} and {v+_instr_amp, v-_instr_amp}, respectively.
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Figure 3.1: Overview of the ADC front end.

ADC system

All references to net names and components in this section refer to the schematic
presented in Figure A.2.

The outputs, S0 and S1, connected to the differential nets, {v+_pga, v-_pga}
and {v+_instr_amp, v-_instr_amp}, are connected to a multiplexer. This
multiplexer is controlled by the digital signal, mux_sel, which is generated by
the FPGA. This signal selects which of S0 and S1 is fed to the active low pass
filter consisting of a built in amplifier inside the ADC component, resistors R11
and R12, and capacitors C25 and C26. The break frequency of the low pass filter
was set with the values presented in Table 3.1 resulting in a break frequency
of 1.012 MHz according to Equation 2.1, as it was designed according to the
schematic presented in Figure 2.3. The output of the low pass filter is sampled
by the ADC and sent to the FPGA through a 16-bit digital interface consisting
of a control bus, fpga_adc_ctrl, and a data bus, fpga_adc_data. Before it is
sent to the FPGA it is filtered by a digital low pass filter with a break frequency
of 1 MHz that is built into the ADC.

FPGA

Component The FPGA component, a Xilinx Zynq Z7020, used in this thesis
is the one that is mounted on the ZedBoard FPGA development board which is
the development board used in this thesis to interface the FPGA to the ADC.
Xilinx claims that this FPGA has 85,000 equivalent logic cells of FPGA fabric
and an embedded hard dual-core ARM processor Cortex A9.
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Table 3.1: Resistor and capacitor values for the low pass filter consisting of
resistors R11 and R12 and capacitors C25 and C26 in the schematic describing
the ADC system of the ADC front end being presented in Figure A.2.

Component Value

R11 655 Ω
R12 655 Ω
C25 240 pF
C26 240 pF

Designs for this FPGA were implemented with a tool suite provided by
Xilinx named ISE Design Suite [16].

Schematics All references to net names and components in this section refer
to the schematic presented in Figure A.3.

The FPGA component shown in the schematic is not an actual FPGA, but
an expansion connector which can be connected to the FPGA development
board described in the previous paragraph. The FPGA (which is located on the
development board) is generating a PWM signal, pwm, controlling the PGA. It
is also generating control signals, fpga_adc_ctrl, to perform read/write oper-
ations on the ADC through the data bus, fpga_adc_data and it is generating a
clock signal, mclk, to the ADC and a digital signal, mux_sel, to control which
of the signals S0 and S1 that is passed through the multiplexer. A voltage level
shifter, LevelShifter1, translates the 2.5 V signals the FPGA is generating to
5 V signals, mux_sel and mclk, that the multiplexer and the PGA are being
controlled with.

Power supply

All references to net names and components in this section refer to the schematic
presented in Figure A.4.

An input voltage of 12 V, D12V, is generated from the FPGA development
board. This voltage is used to generate new voltages on the board. These
voltages are:

• +5V, used to provide the analog components with a voltage of 5 V.

• +2.5V, used to provide the analog components with a voltage of 2.5 V.

• D5V, used to provide the digital components with a voltage of 5 V.

• D2.5V, used to provide the digital components with a voltage of 2.5 V.

• 2V5ref, used to provide a stable voltage reference of 2.5 V so that the
ADC can take accurate samples.

Board design

Design files for a 57 × 65 mm, four layer board was sent in to Cogra [17] who
manufactured the board. The top layer contained two ground planes (analog
and digital). These can be seen in Figure A.5. The upper ground plane is the
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Figure 3.2: Measured frequency response of the ADC front end.

digital one and the other is the analog. All the components were placed at the
top layer except the expansion connector, U1 (see Figure A.3), which was placed
at the bottom layer. For more details about the board, see Appendix A.3.

3.1.2 Performance

In this section, measured properties like frequency response, noise and power
consumption are presented as well as an erratic behavior of the system at high
amplitudes of the input signal.

Frequency response

The gain was measured at different frequencies between the input signal and
the input to the ADC. In order to measure the gain at different frequencies,
different sinusoids of different frequencies and known amplitude was fed to the
input of the front end by a signal generator. The amplitude of the resulting
output sinusoids (measured at the input to the ADC with an oscilloscope) was
then noted. To obtain the gain, the output amplitudes were divided by the
input amplitude and then converted to decibels by taking the logarithm of the
result and then multiplying by 20. The gain was normalized to be 0 dB at its
peak value. More measurements were taken close to the break frequency than
at the other frequencies as the gain remained nearly constant at those other
frequencies. The resulting gain data was plotted with GNU Octave [13] and the
resulting frequency response plot is presented in Figure 3.2. From the plot, one
can see that the break frequency is close to 2.1 MHz.
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Table 3.2: Noise introduced from the amplifiers.

Component Noise per
√

Hz Noise below 2.1 MHz

Instrumentation amp. 3.2 nV 4.6 µV
Programmable gain amp. 5.0 nV 7.2 µV

Noise

Noise estimation Due to the complexity involved in measuring noise, no
noise measurements have been conducted. However, by reading the noise speci-
fications from the datasheets of the amplifiers, an estimation of the noise can be
made. A list of the noise specifications for the two amplifiers used is presented
in Table 3.2. From the table it can be seen that 4.6 µV of noise that will not
be filtered out by the low pass filter is introduced from the instrumentation
amplifier and 5.0 V from the PGA. However, the signal path to the PGA goes
via the instrumentation amplifier so that the noise present at the output of the
PGA is the sum of the two individual noise levels, that is 11.8 µV.

Bit resolution For the worst-case signal path, 11.8 µV of noise is introduced.
This voltage divided by the maximum voltage sampled by the ADC, 5 V, yields
a ratio that can be converted to the same binary format that the ADC uses;
Q0.24. That ratio equals 2.36 · 10−6 and when converted to Q0.24 it can be
written as 0.0000 0000 0000 0000 0010 10002, with the subscript, 2, denoting
the base of the number format. Since there are 18 ’0’s preceding the first ’1’
in that number, the noise will not affect the first 18 bits. Hence the ADC will
provide output samples with 18 bits of resolution.

Power consumption

The current consumption for the ADC front end excluding the FPGA develop-
ment board was found to be 18 mA at the 12 V supply when outputting samples
at a rate of 2.5 MHz. This yields a power consumption of 220 mW.

Distortion at high amplitudes

The ADC system suffered problems when subject to high amplitudes on the in-
put signal resulting in a distorted output signal. No explanation to this behavior
has been found. For low amplitudes (less than about 200 mV), the system seems
to behave as expected. Addressing this issue is considered future work.

3.2 FPGA interface

In this section the internal and external interfaces of the FPGA are described.

3.2.1 ADC communication

The FPGA interface to the ADC consists of a control bus and a data bus which
sends samples at a rate of 2.5 MHz, low pass filtered with a break frequency of
1 MHz. Because of this high speed, reading from the ADC was implemented
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on the FPGA fabric and not in the embedded processor. The writes to the
ADC are controlled from the processor. A VHDL module, ad7760Reader (see
Listing B.1 for source code), was created to forward processor writes to and
reading samples from the ADC. Read samples are stored in memory and the
processor can fetch them from there.

3.2.2 Processor - FPGA communication

Communications between processor and FPGA fabric was done through a AMBA
AXI4 Interface Protocol [18]. This protocol is capable of burst reads, which
means that it can read large chunks of memory in a single read operation, yield-
ing high throughput. On the FPGA fabric side, this interface is implemented
in a file automatically generated by Xilinx XPS, which is part of ISE Design
Suite [16]. This file was modified to contain modules for implementing the ADC
communication and the FIR filter bank described in Section 3.3. On the pro-
cessor side, functions to communicate with the FPGA side was generated by
Xilinx XPS.

3.3 FPGA FIR filter bank

An FIR filter bank demonstration application was implemented on the ADC
front end (for source code see Listing B.2, Listing B.3 and Listing B.4). The
implementation follows the design described in Section 2.3. Implementations
with various parameters were tested for speed and usage of FPGA resources.
These parameters were:

• Word size - The number of bits used to represent integers in the design.

• Filter order - The order of the FIR filters. All filters in the bank were
always of the same order because of the simplicity of running the tests
that way and no reason was found to why mixing filter orders would yield
more interesting test results or even different test results.

• Number of filters - The number of FIR filters in the bank.

3.3.1 Computational speed

The FIR filter bank was able to operate at a rate of 77 MHz, that is outputting
samples at that rate. This is true for all the variations of parameters.

3.3.2 Resource utilization

For the resource utilization diagrams presented in this section (Figure 3.3, Fig-
ure 3.4 and Figure 3.5), the two most interesting resources and at the same time
the resources whose degree of utilization vary the most are LUT and DSP48E1.
LUT are the lookup tables constituting the central part of the FPGA fabric
and DSP48E1 are hardware digital signal processing blocks like multipliers and
adders.

For too large values of the implementation parameters, the tools synthesizing
the FPGA bitstream stopped with an error message stating that to little RAM
was available on the computer that was running the tools. This thus limited the
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experiments. This computer was running a 32-bit version of Microsoft Windows
which limits the memory per application to 2 GB. Had the synthesis been run
on 64-bit Windows, this would likely not have been an issue and parameters
with larger values could have been tested. This error was seen for:

• When the word size exceeded 16 bits.

• When the filter order exceeded 256.

• When the number of filters exceeded 32.

Word size

Two FIR filter bank implementations with different word sizes were generated
and the resulting resource utilization is presented in Figure 3.3. It can be seen
that more DSP48E1 blocks are used in the case of a word size of 8 while more
LUT blocks were used in the case of a word size of 16. This makes it hard to
estimate the resource utilization for varying word sizes, as there is no known
correlation between DSP48E1 blocks and LUT blocks.

Filter order

Three FIR filter bank implementations with different orders of the filters were
generated and the resulting resource utilization is presented in Figure 3.4. It
can be seen that varying the filter order does not affect the resource utilization.
Why this is the case is hard to answer, but one possible explanation is that
some of the 25 % DSP48E1 blocks are consumed as a continuous block, that is
that no value of utilization in between some lower bound and 25 % is possible.

Number of filters

Three FIR filter bank implementations with different numbers of filters per bank
were generated and the resulting resource utilization is presented in Figure 3.5.
It can be seen that for low amounts of filters per bank many DSP48E1 blocks
are utilized while LUT blocks are utilized instead for higher amounts of filters
per bank. As in the case for varying word size, this makes it hard to estimate
resource utilization.

3.3.3 Power consumption

The power consumption of the FPGA was measured when the FPGA was idle
and when FIR filter banks with different parameters were running on it. The
processor was stopped and the ADC front end board was disconnected during
both measurements. No notable difference in power consumption was found in
any of the parameter variations compared to when the FPGA was idle; The
measurements always showed a power consumption of 370 mW. This is quite
high standby consumption, and is probably a result of the fact that the measure-
ments were taken on a development board with lots of peripherals whose power
consumption is unknown. If the measurements could have been taken on the
FPGA component only, a more accurate estimation of the power consumption
of the FIR filter bank could have been done.
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Figure 3.3: Resource utilization diagrams for an FIR filter bank for varying
word size
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Figure 3.4: Resource utilization diagrams for an FIR filter bank for varying
filter order.
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Figure 3.5: Resource utilization diagrams for an FIR filter bank for varying
numbers of filters per bank.
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3.4 FPGA Matching pursuit

In a parallel project made by Albertsson [5] a VHDL implementation of the
event-based matching pursuit described by Smith and Lewicki in 2006 [4] was
developed. In that project kernels were modeled in the same way as FIR filters
were modeled in this project. An attempt was made to use the code developed
in that project on the FPGA from this thesis, but it was found that the code was
not synthesizable by ISE Design Suite [16]. The code could probably have been
modified to be synthesizable, but due to time constraints of both Albertsson
and the author, this was not done.
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Discussion

In this chapter, an evaluation of the different sub-projects of this thesis is pre-
sented. Conclusions are drawn from those evaluations and a discussion is held
of what can be done with the result. Possible future work is also presented.

4.1 ADC front end evaluation

An evaluation of the ADC front end was performed, based on measured data
and calculated estimations. The discussion that follows is the result of that
evaluation.

4.1.1 Power consumption

The 220 mW of power that the ADC front end consumes when operating at
full speed is quite high. A standard lithium ion battery may have stored energy
on the order of 10 kJ. Assuming a 10 kJ battery, then the on-time of the front
end would equal 10 kJ / 220 mW ≈ 13 hours and here the power consumed by
the FPGA is excluded. Due to such a short battery life, continuous sampling
may be inappropriate for battery powered applications. However, if sampling
is done in intervals, say every minute of an hour, then change of batteries need
only to happen once a month. For certain applications, for example condition
monitoring of bearings described in Section 1.2.1, this approach can be used to
reduce the power consumption as a bearing often breaks slowly and therefore
small defects need not to be detected immediately. While this is the case for
bearings, for other applications like the earthquake detection example described
in Section 1.2.2 the output of a sufficiently large solar cell might be enough to
keep the sensor system continuously powered.

4.1.2 Noise

If the noise estimations are correct then a quite high signal-to-noise ratio (SNR)
can be achieved even for very small signals. For example, for a signal of
as small amplitude as 1 mV, a signal to noise ratio for the worst-case path
(via both the instrumentation amplifier and the PGA) the SNR would equal
1 mV / 11.8 µV = 85 = 58 dB.
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Also, 18 noise free bits from the ADC is a quite good result and might
very well be applicable to running an event-based matching pursuit algorithm
like the one described by Smith and Lewicki in 2006 [4]. This has actually been
demonstrated by Albertsson [5] who has run matching pursuit with good results
with 16-bit fixed-point integers as primary data type.

4.2 FIR filter bank evaluation

The FIR filter bank implementation was evaluated and some conclusions were
drawn from that evaluation. The discussion that follows is a result of that
evaluation.

4.2.1 Resource utilization

It is hard to draw conclusions from the resource usage results presented in
Section 3.3.2 as DSP48E1 and LUT blocks seem to be used interchangeably
and no correlation between their value is known. It would be interesting to see
diagrams for implementations where no DSP48E1 blocks were available, but no
such option in ISE Design Suite [16] has been found.

However, the resource usage seem to be low even for the largest filter bank
that could be generated, that is the one with 16 filters in which each filter
is of order 256 and has a word size of 16 bits. Because of the large size of
that filter, the author deems it likely that large applications like the VHDL
matching pursuit code developed by Albertsson [5] could fit in the FPGA used
in this thesis.

4.2.2 Computational speed

The FIR filter bank could be run at a sample rate of 77 MHz. In the parallel
project by Albertsson [5], frequencies on the order of 10 MHz is required to run
the VHDL event-based matching pursuit algorithm developed in that project.
Due to the similarity in design between the two projects (see Section 2.3.1 for
more information on this), the author deems it likely that event-based matching
pursuit (as described in [4]) could be implemented on the system constructed
in this thesis.

4.2.3 Power consumption

As the power consumption of the FIR filter bank is negligible compared to
the power consumption of the FPGA development board in stand-by mode, it
is hard to estimate the energy efficiency of the FIR filter bank. However, it
would be interesting to see how much the power consumption can be increased
by converting to an ASIC design. For a deeper discussion on this topic, see
Section 4.3.2.

4.3 Future work

In this section possible future work is presented that was not included in this
thesis due to time and scope constraints.
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4.3.1 Low power consumption design

As mentioned in Section 4.2.3, it would be interesting to see how much the power
consumption can be lowered by changing the designs of the applications. To do
this, a method for calculating the power consumption of the actual application
running on the FPGA (power consumption excluding stand-by consumption of
the development board) needs to be established.

4.3.2 FPGA to ASIC

FPGAs demand a higher per-unit-cost for large quantities of devices than do
ASICs. Also, FPGAs are inherently less power and speed efficient than ASICs.
Not counting the use of ”hard blocks” in FPGAs (that is, for example, a mul-
tiplier made directly in hardware which can be connected to the FPGA fabric),
the power consumption can be lowered by a factor of approximately 17 by con-
verting from an FPGA design to an ASIC design [19]. Still not counting hard
blocks, the computational speed can be increased by a factor of approximately
35 by converting to an ASIC [19]. These approximate improvement factors are
based off certain benchmarking tests run in [19]. The FPGA that was used
in this thesis has 25 hard multipliers. That is far fewer than the multipliers
used in all the FIR filters in the demos presented in this thesis. This means
that merely by changing to an ASIC design (not modifying the designs), the
power consumption and computational speed of the ADC front end (excluding
the analog parts) could probably be reduced by factors of around 17 and 35,
respectively. Going from an FPGA to an ASIC design should be relatively easy
when assuming the VHDL and C code developed in this project.

4.3.3 Implementing Albertsson’s matching pursuit

The C and VHDL implementation of matching pursuit developed by Alberts-
son [5] can be adjusted as to be synthesizable on the ADC front end constructed
in this thesis. If this is done successfully, it would prove that event-based match-
ing pursuit described by Smith and Lewicki in 2006 [4] is implementable on the
ADC front end developed in this thesis. It would also make the ADC front end
ready to be used for most, if not all, the applications described in Section 1.2.

4.4 Conclusion

Based on all the measurements, estimations and calculations done in this thesis,
it is deemed likely that the ADC front end is capable of processing algorithms
with similar demands as event-based matching pursuit described by Smith and
Lewicki [4] in a sampling rate on the order of 1 MHz. It is also concluded that a
power consumption suitable for some applications mentioned in this thesis (see
Section 1.2) may be achieved. In any case, the power consumption of the front
end constructed in this thesis can most likely be improved by altering its design
and/or changing its components. This would also extend the ADC front end’s
usability and make it suitable for even more applications. The front end that
was built in this thesis demonstrates that if the noise estimations done in this
thesis are correct, then a system can be built which samples in the megahertz
range with a precision of at least 18 noise free bits.
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Glossary

Below follows a table with meanings and explanations for the abbreviations used
in this thesis.

Abbrev. Meaning Explanation
ADC Analog-to-Digital Converter Component that converts

an analog signal to a digital
one

AFC Analog-to-Feature Converter Component that converts
an analog signal to a digi-
tal one which describes the
original signal in terms of
features

ASIC Application-Specific Integrated
Circuit

Very small electronic circuit
performing a specific task

C C A programming language
DSP Digital Signal Processor Processor more suitable for

signal processing than an
ordinary microprocessor

EDA Electronic Design Automation The field of automating the
creation of electronic sys-
tems, for example PCBs

FIR Finite Impulse Response Digital filter with the prop-
erty that it eventually pro-
duces a zero output when a
single impulse is input to it

FPGA Field-Programmable Gate Ar-
ray

Programmable logic cir-
cuitry

GNU GNU’s Not UNIX A free operating system
HDL Hardware Description Lan-

guage
Language describing hard-
ware

LUT Look-Up Table Table made of digital elec-
tronics used to realize logic
functions
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MUX MUltipleXer Electronic component that
selects as its output signal
one out of many input sig-
nals

PCB Printed Circuit Board Board containing electronic
circuits

PGA Programmable Gain Amplifier Electrical amplifier with
variable gain

PWM Pulse Width Modulation Method for creating digital
control signals with known
period but variable pulse
width

RAM Random-Access Memory Volatile memory with short
access time

SKF Svenska KullagerFabriken AB An international bearing-
oriented company originat-
ing from Sweden [6]

SNR Signal-to-Noise ratio The ratio between signal
amplitude and noise ampli-
tude

UART Universal Asynchronous Re-
ceiver/Transmitter

Commonly used simple
communication protocol

VHDL VHSIC Hardware Description
Language

A hardware description lan-
guage

VHSIC Very High Speed Integrated Cir-
cuit

Integrated circuit designed
for very high clock frequen-
cies
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Appendix A

ADC front end specification

A.1 Component list

A list of all non pin header connectors and active components that were used is
presented in Table A.1.

A.2 Schematics

All schematics of the ADC front end are presented in the following figures:

• Amplification system: Figure A.1

• ADC system: Figure A.2

• FPGA interface: Figure A.3

• Power supply: Figure A.4

A.3 Board design

The dimensions of the board are 57× 65 mm.
The board masks of the ADC front end are presented in the following figures:

• Front layer: Figure A.5

• Back layer: Figure A.6

• Inner layer 1: Figure A.7

• Inner layer 2: Figure A.8

A.4 Pictures

Pictures of the ADC front end board is preseneted in the following Figures:

• Front: Figure A.9

• Back, beside FPGA development board: Figure A.10

• Mounted on FPGA development board: Figure A.11
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Table A.1: List of all non pin header connectors and active components and
that were used to design the ADC front end

Part Part name Amount

Amplifiers
Instrumentation amplifier AD8421ARMZ 1
Programmable gain amplifier AD8330ARQZ 1

Voltage generators
Voltage reference, 2.5 V CD4053BPWRG3 1
Voltage regulator, 2.5 V LT1763CS8-2.5#PBF 2
Voltage regulator, 5 V LT1763CS8-5#PBF 2

Other
Analog-to-digital converter AD7760BSVZ 1
Multiplexer CD4053BPWRG3 1
Level shifter TXB0102DCUR 1
Expansion connector ASP-134606-01 1
FPGA development board ZedBoard Rev. C.1 1

A.5 Errata

Mistakes that were made during the making of the board are listed here:

• The pads of the voltage level shifter, LevelShifter1, shown in Figure A.3,
are too short and should be extended. It is still possible to solder LevelShifter1,
but it is difficult.

• The holes for the expansion connector, U1, shown in Figure A.3, are of
too small diameter so that the expansion connector pins will not fit. If a
steady hand is available, the expansion connector can be soldered on top
of the holes.

• For unknown reasons, the PGA control signal, pwm, could not be pro-
grammed to output a signal. As a workaround, a patch cable between
pins H20 and C6 of U1 can be soldered to the board.
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Figure A.1: Schematics of the amplifier system of the ADC front end.
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Figure A.2: Schematics of ADC system of the ADC front end.
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Figure A.3: Schematics of the FPGA interface of the ADC front end.
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Figure A.4: Schematics of the power supplies of the ADC front end.
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Figure A.5: Front layer of the mask of the ADC front end board.

Figure A.6: Back layer of the mask of the ADC front end board.

43



A.5. ERRATA APPENDIX A. ADC FRONT END SPECIFICATION

Figure A.7: First inner layer of the mask of the ADC front end board.

Figure A.8: Second inner layer of the mask of the ADC front end board.
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Figure A.9: The front side of the ADC front end board.

Figure A.10: The back side of the ADC front end board laying beside the
FPGA development board.
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Figure A.11: The ADC front end board mounted on top of the FPGA devel-
opment board.
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Appendix B

Source code

B.1 VHDL source code

VHDL source code for selected files developed for this thesis is presented in the
following listings:

• ad7760Reader.vhd: Listing B.1

• FirFilterBank.vhd: Listing B.2

• FirFilter.vhd: Listing B.3

• AdderTree.vhd: Listing B.4
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Listing B.1: ad7760Reader.vhd - VHDL module describing a reader for an
AD7760BSVZ ADC.

1 −− C o p y r i g h t 2013 Joa k im N i l s s o n
2 −−
3 −− Th i s p r o g r am i s f r e e s o f t w a r e : you can r e d i s t r i b u t e i t and / o r m o d i f y
4 −− i t u n d e r t h e t e rm s o f t h e GNU Ge n e r a l P u b l i c L i c e n s e a s p u b l i s h e d b y
5 −− t h e F r e e S o f t w a r e F oun d a t i o n , e i t h e r v e r s i o n 3 o f t h e L i c e n s e , o r
6 −− ( a t y o u r o p t i o n ) any l a t e r v e r s i o n .
7 −−
8 −− Th i s p r o g r am i s d i s t r i b u t e d i n t h e h o p e t h a t i t w i l l b e u s e f u l ,
9 −− b u t WITHOUT ANY WARRANTY; w i t h o u t e v e n t h e i m p l i e d w a r r a n t y o f

10 −− MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE . S e e t h e
11 −− GNU Gen e r a l P u b l i c L i c e n s e f o r more d e t a i l s .
12 −−
13 −− You s h o u l d h a v e r e c e i v e d a c o p y o f t h e GNU Ge n e r a l P u b l i c L i c e n s e
14 −− a l o n g w i t h t h i s p r o g r am . I f no t , s e e <h t t p : / / www . gnu . o r g / l i c e n s e s />.
15
16 l ibrary i e e e ;
17 use i e e e . s t d l o g i c 1 1 6 4 . a l l ;
18 use i e e e . numeric std . a l l ;
19
20 entity ad7760Reader i s
21 port (
22 c lk : in s t d l o g i c ;
23 r s t : in s t d l o g i c ;
24 read en : in s t d l o g i c ;
25 drdy : in s t d l o g i c ;
26 c s i n : in s t d l o g i c ;
27 c s out : out s t d l o g i c ;
28 db : in s t d l o g i c v e c t o r (15 downto 0) ;
29 r e s : out s t d l o g i c v e c t o r (31 downto 0) ;
30 res rdy : out s t d l o g i c
31 ) ;
32 end ad7760Reader ;
33
34 architecture arch of ad7760Reader i s
35 −− Type s
36 type s t a t e t i s (
37 IDLE ,
38 CSLOW1,
39 READ1,
40 CSHIGH,
41 CSLOW2,
42 READ2,
43 RESR
44 ) ;
45
46 −− S i g n a l s
47 signal s t a t e c u r : s t a t e t ;
48 signal s t a t e n ex t : s t a t e t ;
49 signal msbdata : s t d l o g i c v e c t o r (15 downto 0) ;
50
51 begin
52
53 −− Upda t e s t a t e and r e s e t p r o c e s s
54 process ( clk , r s t ) begin
55 i f r s t = ’1 ’ then
56 s t a t e cu r <= IDLE ;
57 e l s i f r i s i n g e d g e ( c lk ) then
58 s t a t e cu r <= sta t e n ex t ;
59 end i f ;
60 end process ;
61
62 −− S t a t e mach i n e p r o c e s s
63 process ( s t a t e cu r , drdy , c s in , read en ) begin
64 i f read en = ’0 ’ then
65 c s out <= c s i n ;
66 else
67 case s t a t e c u r i s
68 when IDLE =>
69 i f drdy = ’0 ’ then
70 s t a t e n ex t <= CSLOW1;
71 else
72 s t a t e n ex t <= IDLE ;
73 end i f ;
74 c s out <= ’1 ’ ;
75 res rdy <= ’0 ’ ;
76 r e s <= ( others => ’ 0 ’ ) ;
77
78 when CSLOW1 =>
79 s t a t e n ex t <= READ1;
80 c s out <= ’0 ’ ;
81
82 when READ1 =>
83 s t a t e n ex t <= CSHIGH;
84 msbdata <= db ;
85
86 when CSHIGH =>
87 s t a t e n ex t <= CSLOW2;
88 c s out <= ’1 ’ ;
89
90 when CSLOW2 =>
91 s t a t e n ex t <= READ2;
92 c s out <= ’0 ’ ;
93
94 when READ2 =>
95 s t a t e n ex t <= RESR;
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96 r e s <= msbdata & db ;
97
98 when RESR =>
99 s t a t e n ex t <= IDLE ;

100 res rdy <= ’1 ’ ;
101 c s out <= ’1 ’ ;
102
103 when others =>
104 s t a t e n ex t <= IDLE ;
105 end case ;
106 end i f ;
107 end process ;
108
109 end arch ;
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Listing B.2: FirFilterBank.vhd - VHDL module describing a bank of FIR
filters.

1 −− C o p y r i g h t 2013 Joa k im N i l s s o n
2 −−
3 −− Th i s p r o g r am i s f r e e s o f t w a r e : you can r e d i s t r i b u t e i t and / o r m o d i f y
4 −− i t u n d e r t h e t e rm s o f t h e GNU Ge n e r a l P u b l i c L i c e n s e a s p u b l i s h e d b y
5 −− t h e F r e e S o f t w a r e F oun d a t i o n , e i t h e r v e r s i o n 3 o f t h e L i c e n s e , o r
6 −− ( a t y o u r o p t i o n ) any l a t e r v e r s i o n .
7 −−
8 −− Th i s p r o g r am i s d i s t r i b u t e d i n t h e h o p e t h a t i t w i l l b e u s e f u l ,
9 −− b u t WITHOUT ANY WARRANTY; w i t h o u t e v e n t h e i m p l i e d w a r r a n t y o f

10 −− MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE . S e e t h e
11 −− GNU Gen e r a l P u b l i c L i c e n s e f o r more d e t a i l s .
12 −−
13 −− You s h o u l d h a v e r e c e i v e d a c o p y o f t h e GNU Ge n e r a l P u b l i c L i c e n s e
14 −− a l o n g w i t h t h i s p r o g r am . I f no t , s e e <h t t p : / / www . gnu . o r g / l i c e n s e s />.
15
16 l ibrary i e e e ;
17 use i e e e . s t d l o g i c 1 1 6 4 . a l l ;
18 use i e e e . numeric std . a l l ;
19
20 entity FirFi l t e rBank i s
21 generic (
22 WORDSIZE : i n t e g e r ;
23 ORDER : i n t e g e r ;
24 BANKS : i n t e g e r
25 ) ;
26 port (
27 clk , ha l t : in s t d l o g i c ;
28 r s t : in s t d l o g i c v e c t o r (BANKS − 1 downto 0) ;
29 coe f f wen : in s t d l o g i c v e c t o r (BANKS − 1 downto 0) ;
30 i v a l : in s t d l o g i c v e c t o r (WORDSIZE − 1 downto 0) ;
31 o v a l s f l a t : out s t d l o g i c v e c t o r (WORDSIZE ∗ BANKS − 1 downto 0)
32 ) ;
33 end FirFi l te rBank ;
34
35 architecture arch F i rF i l t e rBank of FirFi l te rBank i s
36 −− Type s
37 subtype SWord i s s igned (WORDSIZE − 1 downto 0) ;
38 type Arr banks i s array (0 to ORDER − 1) of SWord ;
39
40 −− S i g n a l s
41 signal ova l s : Arr banks ;
42
43 −− Componen t s
44 component F i rF i l t e r
45 generic (
46 WORDSIZE : i n t e g e r ;
47 ORDER : i n t e g e r
48 ) ;
49 port (
50 clk , halt , r s t : in s t d l o g i c ;
51 coe f f wen : in s t d l o g i c ;
52 i v a l : in s igned (WORDSIZE − 1 downto 0) ;
53 oval : out s igned (WORDSIZE − 1 downto 0)
54 ) ;
55 end component ;
56
57 begin
58
59 f i r s : for i in 0 to BANKS − 1 generate
60 −− FIR f i l t e r s
61 f i r : F i r F i l t e r
62 generic map (
63 WORDSIZE => WORDSIZE,
64 ORDER => ORDER
65 )
66 port map (
67 c lk => clk ,
68 ha l t => halt ,
69 r s t => r s t ( i ) ,
70 coe f f wen => coe f f wen ( i ) ,
71 i v a l => s igned ( i v a l ) ,
72 oval => ova l s ( i )
73 ) ;
74
75 −− Unpack o u t p u t v a l u e s
76 o v a l s f l a t ( WORDSIZE ∗ ( i + 1) − 1 downto WORDSIZE ∗ i ) <=

s t d l o g i c v e c t o r ( ova l s ( i ) ) ;
77 end generate ;
78
79 end arch F i rF i l t e rBank ;
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Listing B.3: FirFilter.vhd - VHDL module describing an FIR filter.

1 −− C o p y r i g h t 2013 Joa k im N i l s s o n
2 −−
3 −− Th i s p r o g r am i s f r e e s o f t w a r e : you can r e d i s t r i b u t e i t and / o r m o d i f y
4 −− i t u n d e r t h e t e rm s o f t h e GNU Ge n e r a l P u b l i c L i c e n s e a s p u b l i s h e d b y
5 −− t h e F r e e S o f t w a r e F oun d a t i o n , e i t h e r v e r s i o n 3 o f t h e L i c e n s e , o r
6 −− ( a t y o u r o p t i o n ) any l a t e r v e r s i o n .
7 −−
8 −− Th i s p r o g r am i s d i s t r i b u t e d i n t h e h o p e t h a t i t w i l l b e u s e f u l ,
9 −− b u t WITHOUT ANY WARRANTY; w i t h o u t e v e n t h e i m p l i e d w a r r a n t y o f

10 −− MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE . S e e t h e
11 −− GNU Gen e r a l P u b l i c L i c e n s e f o r more d e t a i l s .
12 −−
13 −− You s h o u l d h a v e r e c e i v e d a c o p y o f t h e GNU Ge n e r a l P u b l i c L i c e n s e
14 −− a l o n g w i t h t h i s p r o g r am . I f no t , s e e <h t t p : / / www . gnu . o r g / l i c e n s e s />.
15
16 l ibrary i e e e ;
17 use i e e e . s t d l o g i c 1 1 6 4 . a l l ;
18 use i e e e . numeric std . a l l ;
19 use i e e e . math real . a l l ;
20
21 entity F i rF i l t e r i s
22 generic (
23 WORDSIZE : i n t e g e r ;
24 ORDER : i n t e g e r
25 ) ;
26 port (
27 clk , halt , r s t : in s t d l o g i c ;
28 coe f f wen : in s t d l o g i c ;
29 i v a l : in s igned (WORDSIZE − 1 downto 0) ;
30 oval : out s igned (WORDSIZE − 1 downto 0)
31 ) ;
32 end F i r F i l t e r ;
33
34 architecture a r c h F i rF i l t e r of F i rF i l t e r i s
35 −− C o n s t a n t s
36 constant LOG WORDSIZE : i n t e g e r := in t e g e r ( c e i l ( log2 ( r e a l ( WORDSIZE ) ) ) ) ;
37
38 −− Type s
39 subtype SWord i s s igned (WORDSIZE − 1 downto 0) ;
40 type Arr order i s array (0 to ORDER − 1) of SWord ;
41
42 −− S i g n a l s
43 signal ptr : unsigned (LOG WORDSIZE − 1 downto 0) := ( others => ’ 0 ’ )

;
44 signal c o e f f s , va l s : Arr order ;
45 signal t e rm s f l a t : s t d l o g i c v e c t o r (WORDSIZE ∗ ORDER − 1 downto 0) ;
46 signal t e rmsExt f l a t : s t d l o g i c v e c t o r (2 ∗ WORDSIZE ∗ ORDER − 1 downto 0) ;
47
48 −− Componen t s
49 component AdderTree
50 generic (
51 WORDSIZE : i n t e g e r ;
52 ELEMENTS : i n t e g e r
53 ) ;
54 port (
55 clk , ha l t : in s t d l o g i c ;
56 t e rms f l a t : in s t d l o g i c v e c t o r (WORDSIZE ∗ ORDER − 1 downto 0) ;
57 sum : out s igned (WORDSIZE − 1 downto 0)
58 ) ;
59 end component ;
60
61 begin
62
63 −− C l o c k p r o c e s s
64 process ( c lk ) i s begin
65 i f r i s i n g e d g e ( c lk ) then
66 i f r s t = ’1 ’ then
67 −− R e s e t p o i n t e r
68 ptr <= ( others => ’ 0 ’ ) ;
69
70 −− R e s e t c o e f f i c i e n t s
71 r e s e tCo e f f s : for i in 0 to ORDER − 1 loop
72 c o e f f s ( i ) <= ( others => ’ 0 ’ ) ;
73 end loop ;
74 e l s i f ( ha l t = ’0 ’ ) then
75 −− I n c r em e n t p o i n t e r
76 ptr <= ptr + 1 ;
77
78 −− F e t c h i n p u t v a l u e
79 va l s ( t o i n t e g e r ( ptr ) ) <= iv a l ;
80
81 −− Wr i t e c o e f f i c i e n t
82 i f coe f f wen = ’1 ’ then
83 c o e f f s ( t o i n t e g e r ( ptr ) ) <= iv a l ;
84 end i f ;
85
86 end i f ;
87 end i f ;
88 end process ;
89
90 −− M u l t i p l y c o e f f s w i t h v a l s
91 mult ip ly : for i in 0 to ORDER − 1 generate begin
92 te rmsExt f l a t ( 2 ∗ ( i + 1) ∗ WORDSIZE − 1 downto 2 ∗ i ∗ WORDSIZE ) <=

s t d l o g i c v e c t o r ( va l s ( t o i n t e g e r ( to uns igned ( i , ptr ’ l ength ) + ptr
) ) ∗ c o e f f s (ORDER − 1 − i ) ) ;
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93 t e rms f l a t ( ( i + 1) ∗ WORDSIZE − 1 downto i ∗ WORDSIZE ) <=
termsExt f l a t ( 2 ∗ ( i + 1) ∗ WORDSIZE − WORDSIZE − 1 downto 2 ∗ i ∗
WORDSIZE ) ;

94 end generate ;
95
96 −− Add t h e t e rm s
97 at : AdderTree
98 generic map (
99 WORDSIZE => WORDSIZE,

100 ELEMENTS => ORDER
101 )
102 port map (
103 c lk => clk ,
104 ha l t => halt ,
105 t e rms f l a t => t e rms f l a t ,
106 sum => oval
107 ) ;
108
109 end a r c h F i rF i l t e r ;
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Listing B.4: AdderTree.vhd - VHDL module describing an adder tree.

1 −− C o p y r i g h t 2013 Joa k im N i l s s o n
2 −−
3 −− Th i s p r o g r am i s f r e e s o f t w a r e : you can r e d i s t r i b u t e i t and / o r m o d i f y
4 −− i t u n d e r t h e t e rm s o f t h e GNU Ge n e r a l P u b l i c L i c e n s e a s p u b l i s h e d b y
5 −− t h e F r e e S o f t w a r e F oun d a t i o n , e i t h e r v e r s i o n 3 o f t h e L i c e n s e , o r
6 −− ( a t y o u r o p t i o n ) any l a t e r v e r s i o n .
7 −−
8 −− Th i s p r o g r am i s d i s t r i b u t e d i n t h e h o p e t h a t i t w i l l b e u s e f u l ,
9 −− b u t WITHOUT ANY WARRANTY; w i t h o u t e v e n t h e i m p l i e d w a r r a n t y o f

10 −− MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE . S e e t h e
11 −− GNU Gen e r a l P u b l i c L i c e n s e f o r more d e t a i l s .
12 −−
13 −− You s h o u l d h a v e r e c e i v e d a c o p y o f t h e GNU Ge n e r a l P u b l i c L i c e n s e
14 −− a l o n g w i t h t h i s p r o g r am . I f no t , s e e <h t t p : / / www . gnu . o r g / l i c e n s e s />.
15
16 l ibrary i e e e ;
17 use i e e e . s t d l o g i c 1 1 6 4 . a l l ;
18 use i e e e . numeric std . a l l ;
19
20 entity AdderTree i s
21 generic (
22 WORDSIZE : i n t e g e r ;
23 ELEMENTS : i n t e g e r
24 ) ;
25 port (
26 clk , ha l t : in s t d l o g i c ;
27 t e rms f l a t : in s t d l o g i c v e c t o r (WORDSIZE ∗ ELEMENTS − 1 downto 0) ;
28 sum : out s igned (WORDSIZE − 1 downto 0)
29 ) ;
30 end AdderTree ;
31
32 architecture arch AdderTree of AdderTree i s
33 −− Type s
34 subtype SWord i s s igned (WORDSIZE − 1 downto 0) ;
35 type Arr 2elementsM1 i s array (0 to 2 ∗ ELEMENTS − 2) of SWord ;
36
37 −− S i g n a l s
38 signal heap : Arr 2elementsM1 ;
39
40 begin
41
42 −− Pack f l a t t e rm s
43 packFlatTerms : for i in 0 to ELEMENTS − 1 generate begin
44 heap (ELEMENTS + i − 1) <= signed ( t e rms f l a t ( ( i + 1) ∗ WORDSIZE − 1

downto i ∗ WORDSIZE) ) ;
45 end generate ;
46
47 −− Add t e rm s t r e e −w i s e
48 addTerms : for i in 1 to ELEMENTS − 1 generate begin
49 heap ( i − 1) <= heap (2 ∗ i − 1) + heap (2 ∗ i ) when ( r i s i n g e d g e ( c lk ) and

( ha l t = ’0 ’ ) ) ;
50 end generate ;
51
52 −− F i r s t e l e m e n t i n h e a p i s r e s u l t
53 sum <= heap (0) ;
54
55 end arch AdderTree ;
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